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A family of exact solutions to the Navier-Stokes equations is used to analyse unsteady 
three-dimensional viscometric flows that occur in the vicinity of a plane boundary 
that translates and rotates with time-varying velocities. Such flows are important in 
the study of flows that are produced by rotating machinery. They are also useful 
in describing local behaviour in more complex global flows, such as that produced 
in a shear layer by the passage of a disturbance in the mainstream. An example 
is the flow produced in a turbulent shear layer by the passage of the core of a 
Rankine vortex. When the effect of viscosity is unimportant, the use of Lagrangian 
coordinates reduces the mathematical problem to that of solving a set of linear 
ordinary differential equations. 

1. Introduction 
This study uses a family of exact solutions to the Navier-Stokes equations gov- 

erning unsteady flows of a viscous incompressible fluid to analyse several technically 
important flows. Generally, if (XI, x2, x3) denote the Cartesian coordinates of a point 
in the fluid, these solutions are characterized by the fact that the expressions for 
the velocity components (u l ,  u2,ug) are linear forms in x1 with coefficients that are 
functions of ( t , ~ 2 , ~ 3 ) .  The reference axes may translate and rotate relative to an 
inertial frame with velocities that vary with t. Most of the well-known solutions of 
the Navier-Stokes equations belong to this family. Our primary aim is to show that 
there are many other solutions of the same form, and that these solutions can be used 
to analyse real flows. Moreover, these solutions can be generalized to study flows of 
viscoelastic fluids. 

This first paper describes a sub-class of such flows, designated F1 flows. These 
satisfy the additional requirement that u3 = u3(t,x3), so that the component of fluid 
velocity in the direction normal to the plane x3 = 0 is a function only of time, t, 
and the distance, x3, from that plane. The plane can rotate and translate with time- 
varying velocities relative to an inertial frame. In addition to being exact solutions to 
the Navier-Stokes equations, F1 solutions are exact solutions to the boundary-layer 
equations : the terms that are usually omitted to obtain these approximate equations 
from the Navier-Stokes equations are identically zero. Well-known examples of 
parallel F1 flows are Couette (1890), Rayleigh (1911) and Ekman (1905) flows. 
Examples of non-parallel F1 flows are the various Von Karman (1921) swirling flows, 
and the Blasius-Hiemenz (1908,1911) flows at a forward stagnation point. In these 
examples, the fluid is either contained between two parallel plane surfaces, or occupies 
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a semi-infinite region bounded by a single plane surface. For Couette and Rayleigh 
flows the bounding surfaces translate in directions parallel to their planes, but do not 
rotate; for Ekman flows the bounding surfaces rotate about the same fixed axis with 
the same constant total angular velocity and translate in directions parallel to their 
planes. Von Karman flows are generated when two parallel plane surfaces rotate with 
different angular speeds about a common fixed axis that is normal to their planes. 
The Blasius-Hiemenz flow approximates that produced near a line of symmetry when 
a fluid is squeezed between two parallel plates moving with different speeds normal 
to their planes. 

All of the viscometric-type flows listed above are produced when the motions of 
the bounding plane surfaces have at most two degrees of freedom. The F1 solutions 
to the Navier-Stokes equations presented here may be used to describe flows that are 
produced when the bounding surfaces move in any manner that is compatible with 
them remaining plane rigid and parallel: they can translate in directions parallel and 
normal to their planes and rotate about different axes. The mathematical problem 
reduces to that of solving a system of nonlinear partial differential equations in the 
two independent variables ( t , x 3 ) .  This can be split into two sets: the first set, which 
is usually nonlinear, describes the primary component of the flow and is identical to 
that governing one of the flows listed above; it uncouples from the second set which, 
essentially, is linear with coefficients that are determined by the primary component 
of the flow. 

Two sub-classes of F1 flows are of special interest because they involve relatively 
simple mathematics. The simpler one, which is described here, is characterized by 
the fact that the primary component of the flow is such that the coefficients in the 
second set of linear equations are functions only of t .  These can be transformed 
into two, uncoupled, constant coefficient diffusion equations. This result was used 
by Kambe & Tsutomu (1983) and Kambe (1986) to discuss the interaction of two 
parallel shear layers as the distance between them decreases. For the second sub-class 
of F1 flows the primary component of the flow is steady, and is governed by a set of 
nonlinear ordinary differential equations; the second set of linear partial differential 
equations has coefficients that are functions only of x3. Techniques for integrating 
such equations are described by Varley & Seymour (1988). Examples of these flows 
have been given previously by Rott & Lewellen (1967) who described the boundary 
layer above a flat plate that rotates and translates, by Abbott & Walters (1970) who 
described the flow between two flat plates that rotate with the same angular speed 
about different axes, and by Smith (1987) who described a class of rotating eccentric 
flows. 

Although their most obvious application is to the study of viscometric flows and 
to flows that are produced by rotating machinery, in this first paper we show how F1 
solutions may be used also to analyse some features of the strong local interaction 
between a thin shear layer, in which the flow is initially parallel, and a disturbance in 
the outer mainstream. An excellent example of such a problem occurs in the study of 
the strong local atmospheric disturbance that is produced in a layer of air, where the 
flow is strongly sheared by the passage of a tornado. Here, the lower boundary of 
the layer, representing the Earth, is fixed and the upper boundary, representing the 
cloud base, is rotating and translating. Mainly, we concentrate on the flow in regions 
away from material boundaries where it is the fact that the fluid is strongly sheared 
that controls the interaction with the mainstream flow and not the presence of rigid 
boundaries. In this sense the layer is a free shear layer, and the governing equations 
can be transformed into constant-coefficient diffusion equations. 
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The general problem is formulated in $3. It is supposed that prior to t = 0 the 
flow is an unsteady parallel shear flow in which u3 = 0. This ambient flow could 
be any one of the well-known parallel F1 flows or, as we show in $3.2, it could 
be a turbulent shear flow that, like the Rayleigh and Ekman flows, is modelled by 
similarity solutions to the equations governing F1 flows. After t = 0, the passage of 
a disturbance in the mainstream subjects the fluid in the shear layer to non-uniform 
time-varying pressure gradients. Typically, as we show in $4, this mainstream flow 
can be described by solutions to the Euler equations. When these Euler flows are also 
F1 flows, the governing equations are most easily integrated by using Lagrangian 
coordinates. In fact, using these variables reduces the problem of solving a system of 
nonlinear partial differential equations to that of solving a system of linear ordinary 
differential equations. Examples of mainstream flows are given in $ 5. 

In $ 6 we describe the flow produced at the edge of a shear layer during the passage 
of the core of a Rankine vortex in the mainstream. Far from the shear layer, in 
which the flow may be turbulent, the axis of the vortex is perpendicular to the layer 
and moves with a time-varying velocity; the strength of the vortex also varies with 
time. This flow models that occurring in the centre of a tornado which, far above the 
Earth, is convected with the ambient wind speed. The resulting flow is unsteady, and 
fully three-dimensional. 

For most of the flows discussed in this paper the axis of rotation of the reference 
frame is fixed relative to an inertial frame. In $ 9  and $ 8  we state the modifications 
that should be made to the analyses when this axis also rotates with a time-varying 
angular velocity. The representations are used to describe flows in a pitching channel. 

The exact solutions to the Navier-Stokes equations that are used in this study 
describe highly idealized flows: the boundaries of the flow regions are usually of 
infinite extent. In spite of this, like the classical Rayleigh and Von Khrman solutions, 
sometimes these solutions can be used to provide useful information about local 
conditions in more complicated, and more realistic, global flows. For example, F1 
flows can be used to approximate real flows in the vicinity of an axis of rotation or a 
line of symmetry. It should be noted, however, that these are similarity solutions of the 
Navier-Stokes equations that, like all other similarity solutions, must be interpreted 
with care: they can be used only when it can be argued that the local flow is well 
approximated by a viscometric flow. 

2. Formulation 
The flows are referred to Cartesian axes that are either inertial or are translating and 

rotating relative to inertial axes with velocities that vary in time, t. Let x = ( X I ,  x2, x j )  
denote the Cartesian coordinates of a point in the flow at which the fluid velocity 
is u( t ,  x ) .  Then, using conventional vector notation, the Navier-Stokes equations 
governing unsteady motions of an incompressible fluid are 

(2.1) 
au 
at 

V . u = O  and - + + ~ V u + 2 9 x u + f 2 ’ x x + V p = ~ V ~ u .  

9 ( t )  is the angular velocity of the reference axes with respect to inertial axes; 

(2.2) 

where p is the pressure, p is the constant density of the fluid, and f ( t )  is the acceleration 
of the origin relative to an inertial frame. If the fluid is subject to a conservative body 

1 
p ( t , x )  = p / p  + f . x + ,((a * X ) *  - ( a .  s2)(x. XI), 
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force -pVx per unit volume, the term x ( t , x )  should be added to the expression for 
p .  Also, with an obvious re-interpretation of Q ( t )  and p ,  (2.1) may be used to model 
the effect of a magnetic field whose strength and direction vary with time. 

In this study, exact solutions to the Navier-Stokes equations are used to analyse 
several technically important flows for which u and p take the forms 

= w(t ,  x2, x3)Xl + u(t ,  x2, x3) (2.3) 
and 

(2.4) 

2.1. F1 flows 
These are viscometric flows with velocity and pressure fields that are special cases of 
those given by (2.2)-(2.4). They are characterized by the condition that the component 
of fluid velocity, u, in the direction normal to some plane, which may translate and 
rotate relative to inertial axes with time-varying velocities, is a function only o f t  and 
the distance, y ,  from that plane. If the reference axes are chosen so that x3 = y ,  for 
F1 flows 

and 

p = iP2(t, x2, x3)x: + pl(t7 x2, x3bl + pO(4x2, x3)- 

u, = aij(t,y)xj + b d t , ~ ) ,  i , j  = 1,2, u3 = u(t,y), (2.5) 

p = ik , , ( t )x ,x ,  + pl(t,y)xl + ~ o ( t , y )  with k,j = kp, i , j  = 1,2. (2.6) 
The representations (2.5) and (2.6) are special cases of those given by (2.3) and (2.4) 
with 

w, = all(t,X3), 0, = %2(bX3)x2 + h(t7x3), i = 1,2, w3 = 0, u3 = u(t,x3), } (2.7) 
p 2 =  k l l ( t ) ,  p1 = kl2(t)x2 +pl(t,x3), PO = ik22(t)xi +p2(t,x3)x2 + PO(t,x3). 

The expressions (2.5) for the velocity components also satisfy the equations govern- 
ing the boundary-layer flow adjacent to the surface y = 0: the terms that are usually 
omitted to obtain the boundary layer-equations from the Navier-Stokes equations 
are identically zero. In the mainstream the pressure gradients parallel to the surface 
y = 0 are 

(2.8) 
a P  
- = k, , ( t )x ,  +pl(t ,y),  i , j  = 1,2. 
ax I 

Mainly, we consider flows for which the x3-axis also coincides with the axis of 

and (2.9) 

When the expressions (2.5) and (2.6) are inserted, the Navier-Stokes equations (2.1) 
imply that u( t ,  y )  and a(t ,  y )  = (u,,), i, j = 1,2, satisfy the equations 

rotation of the reference frame. Accordingly, 

f2 = (O,O, S Z )  p = p / p  + f . x - ;Q2(x: + xi). 

and 

where J = (-cij3), i,j = 1,2. (511 = 5 2 2  = 0,-512 = 521 = 1.) Once u ( t , y )  and 
a(t, y )  have .been determined from (2.10) and the associated auxiliary conditions, 
b(t, y )  = (bl, b2) is determined from the equation 

ab ab a2b 
- + u u - + ( a + 2 S Z J ) b + p ( t ) = v - - - ,  
at a y  aY2 

(2.11) 
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together with associated auxiliary conditions. Finally, PO( t, y) is determined from 
u(t, y) by the condition 

(2.12) 

F1 flows are used to model the behaviour of global flows in the vicinity of the 
x3-axis. In (2.10) and (2.11), k(t) and p(t) are arbitrary: in practice, these functions 
are chosen either to model the effect of the global flow on that near the x3-axis, or 
as eigenfunctions so that boundary conditions that are imposed at selected values of 
x3 at this span are satisfied. Couette (1890), Rayleigh (1911), Ekman (1905), Blasius- 
Hiemenz (1908,191 1) stagnation point, and von Karman (1921) swirling flows have 
velocity and pressure fields of the forms (2.5) and (2.6). 

3. Shear-layer flows 
In this paper F1 solutions to the Navier-Stokes equations are used to describe 

the flow produced in a localized shear layer by the passage of a disturbance in the 
mainstream. The shear layer contains, or is adjacent to, the surface y = 0, which 
may or may not be a material surface. Prior to the arrival of the disturbance the 
flow inside the shear layer is parallel to the plane y = 0, and is described by those 
solutions to (2.10) and (2.11) for which u = 0. The mainstream flow, which may also 
be sheared in the y-direction, is described by exact solutions to the inviscid forms of 
these equations. 

3.1. Parallel Jlows 
We consider parallel flows that are described by solutions to (2.10) and (2.11) of the 
form 

where QO is a constant and lo is the unit (identity) matrix. For these flows, the 
y-component of vorticity is u(t)=(a21-a12)/2 and the y-component of total vorticity 

u = 0, a = (00 - Q(t))J; and k = (Q,' - Q2(t))/o, (3.1) 

w(t) + Q(t) = constant = Qo. 

The two-dimensional velocity vector 

u = ( u I , u ~ )  = (Qo - Q)Jx + b(t,y), 

where, according to (2.10), b(t,y) = (b1,bZ) satisfies 

ab a2b 
-+(QO+Q)Jb+p=v--. 
at  dY2 

(3.4) 

In particular, when Q = constant, = Qo, u = (bl, b2) where 

These equations govern Couette, Rayleigh and Ekman flows. 
All solutions to (3.4) can be written as 

b = bo(t) + [I(t)l-'C(t,y), (3.6) 

where C( t, y)  satisfies the linear diffusion equation 
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(Qo + Q(t'))dt', (3.8) / ( t )  = ( cosy(t) siny(t) 
- sin y ( t )  cos y ( t )  

bo(t) = /-'[bo(O) - /(t')p(t')dt']. (3.9) 1' and 

We list the forms of bo(t) and C(t ,  y) corresponding to four technically important 
self-similar parallel shear flows. For each of these flows a ( t )  = 0 and u = b(t, y). For 
the first two Q = QO = 0 and, according to (3.8) and (3.9), 

!(t) = /, and bo(t) = bo(0) - p(t')dt'. (3.10) 

The first example is the unsteady Stokes-Rayleigh flow that is produced above a 
plate y = 0 when the fluid is started impulsively from rest with velocity U, at t = -T. 
Then, 

bo = 0 and b = C(t,y) = Ueerf(y/2(v(T + L ) ) " ~ ) .  (3.11) 

The second example is the unsteady flow that is produced in an unbounded fluid by 
the diffusion of a shear layer that was centred on the plane y = 0 at t = -T. Then, 

bo = 0 and b = C(t ,y)  = M(4xv(t + T))-'l2 exp(-y2/4v(t + T ) ) .  (3.12) 

1 

The constant 

(3.13) 

measures the strength of the shear layer. 

angular velocity Q about the y-axis and, according to (3.8), 
For the third example, an Ekman flow, the reference axes are rotating with constant 

( c o s ( 2 ~ t )  s i n ( 2 ~ t )  ) 
- sin(2Qt) cos(252t) . / ( t )  = (3.24) 

When p = constant, for the steady flow above the stationary plane y = 0 

b = ( 2 ~ ) - '  [lo - exp( - (~ /v ) l /~y ) / ( -y /2 (~~) ' / * )1~p ,  (3.15) 

bo = (2fZ)-'Jp, (3.16) 

(3.17) 

and 
c = - ( 2 ~ ) - '  exp(-(Q/v)'i2y)J(t - y / 2 ( v ~ ) ' / ~ ) ] ~ p .  

c1 + iC2 = (2i52)-'(pl + ip2) e x p ( ( - ~ ~ / v ) ' / ~ y )  exp(-2i~t). 

3.2. Self-similar flows: turbulent shear layers 
The expressions (3.11) and (3.12) for each component of C are examples of solutions 
to the diffusion equation that can be written in the similarity form 

C = Ul(1 + t/T)-r/2S(q,r), where rj = y/(2v(T + t)) ' l2 (3.19) 

Equation (3.17) implies that 

(3.18) 

and S ( q ,  r )  satisfies the Rayleigh equation 

S" + qS' + rS  = 0. (3.20) 

In (3.19) and (3.20), U1, T and r are constants and the ' denotes differentiation with 
respect to q. Actually, the expression (3.18) for (C1 + iC2) may be obtained also as 
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the limit of an expression of the form (3.19) by taking 

T = - i ( r / 4 ~ ) ,  ~1 = (2i~)- ' (pl  + ip2) (3.21) 

and then letting Y --+ 00 at constant (t,y). In this limit 

(1 + t/T)-'l2 --+ exp(-2iQt) and S -+ e~p((-2iQ/v)'/~y). (3.22) 

Since the components of C satisfy the linear diffusion equation, more complicated 
shear flows can be obtained by replacing the one-term expression for C(t ,  y) given 
by (3.19) by a sum of such expressions. For example, if S ( q , r )  denotes the function 
satisfying (3.20) together with the conditions 

S ( 0 , r )  = 0 and f " ( q , r )  --+ 1 as q --+ 00, (3.23) 

and if 
(3.24) 

then 
(3.25) 

is a composite similarity solution to (3.7). According to (3.23) and (3.25), if U 

(3.26) 

Ilo = Y/(2V(TO + t))1/2, 

c = UoS(q0,O) + UI[S(Il,O) - (1 + t/T)-r'2S(q,~)1/r 

= (v/2T)'/2, 

as (Il,qo) + 00, c - uo + U1[1 - (uY/v)-rl/r. 
When r > 0, in the mainstream 

c = UO + rP1U1,= u,. (3.27) 

As r -, 0 the asymptotic profile (3.26) is often used to curve-@ the shear profile 
that occurs in the outer part of a turbulent boundary layer. If U denotes the 'friction 
velocity', typically 

UO w 5.5U and U1 FS 2.5U. (3.28) 
When r = 0 relation (3.26) implies that at large, but$nite, values of (Uy/v), 

C / U  - 5.5 + 2.5 ln(Uy/v). (3.29) 

In this limit 

where Sl(q) satisfies the equation 
c = uos(q0,0) + Ul[In(l+ t /TP2S(q,0) + sl(q)I, (3.30) 

S;l + q S ;  = S(q,O) with S1(0) = 0 and Sl(q)/ln(q) -, 1 as q --+ co. 
(3.31) 

It can be shown that when r < 2, 

S ( q ,  r )  = (2 /7~)"~  exp(-q2/2) sinh(yz) exp(-z2/2)z-'dz, (3.32) 

which implies that S'(0, r )  = 2(1-r)/2r (1 - r/2)/7&. In particular, S ( q ,  0) = erf(q/$). 
Also, 

a2 

Sl(q) = (2 /7~) ' /~  exp(-q2/2) J' sinh(qz) exp(-z2/2) ln(z)dz. (3.33) 
0 

When t = 0, 
q = (Uy/v) and qo = ( T/To) ' /~(  Uy/v). (3.34) 
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20 

c 10 
U 

I 

FIGURE 1. Profiles of C(0,y) given by (3.30) for various values of 1. The dashed curve depicts the 
log-profile given by equation (3.29). 

Figure 1 shows the profile of C ( 0 , y )  given by (3.30) for all y in the range where 
0 d U y / v  < lo2 when UO and U1 are given by (3.28) and when T/To = 0.04, the 
value that ensures 

The profile is in good agreement with that found experimentally during the period 
when the shear profile near the wall is changing slowly on the timescale T .  For 
comparison, figure 1 also shows C(0 ,y )  for other values of r .  The parameters 
Uo/U, U1/U and (T /To)  are chosen so that (3.35) is satisfied and the asymptotic 
law (3.29) is approximated. When UO + r-l U1 = 0, condition (3.26) implies that away 
from the wall C - Uo(Uy/v)-'. This power-law profile, with r = -1/7, is also used 
to curve-fit turbulent shear profiles. 

The use of analytic expressions of the form (3.25) to model turbulent flows during 
the 'quiescent' stage has been discussed in detail by Walker et al. (1989). 

u = (VCJO, 0)p2 .  (3.35) 

4. Inviscid mainstream flows: Lagrangian formulation 
We suppose that prior to t = 0 the flow is a parallel shear flow of the type described 

in $3. Thereafter, the shear layer is disturbed by the passage of a disturbance in 
the mainstream that subjects the fluid in the shear layer to non-uniform time-varying 
pressure gradients. In the mainstream conditions are changing slowly with distance 
in all directions parallel to the plane y = 0 and, relative to an observer moving with 
the disturbance, the pressure gradients can be approximated locally by expressions of 
the form (2.8). 

The flow in the mainstream is governed by the Euler equations. In the special cases 
when the d p / d x i ,  i = 1,2, are known functions of ( t , x l , x ~ ) ,  these equations are most 
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easily integrated by introducing Lagrangian variables. In fact, when the d p / a x i  are 
given by (2.8), with p i  = pi(t), using Lagrangian variables reduces the problem of solving 
the inviscid forms of (2.10) and (2 .11) ,  which are a set of nonlinear partial diflerential 
equations, to that of solving a system of linear ordinary diflerential equations. For, 
if (x ( t ,  X, Y ), y(t ,  X, Y )) denote the coordinates of the particle that had coordinates 
( X ,  Y )  at t = 0, the Euler equations imply that 

X” + J ( 2 0 ~ ’  + Q’x) + V p  = 0, (4.1) 

where Vp = ( d p / d x ~ ,  d p / d x 2 )  and ’ denotes the derivative with respect to t at constant 
( X ,  Y ) .  This second-order equation must be solved subject to the initial conditions 
that 

Then, once x(t ,  X ,  Y ) has been found, y(t, X ,  Y )  is determined from the equation 
when t = 0, x = X and x’ = u(O,X, Y) ,=  U ( X ,  Y ) ,  (44 

and the condition that 

when Y = 0, y = yo(t,x); (4.4) 
y = yo(t,x) is the equation of the bounding material surface Y = 0. In terms of 

(4.5) 
x(t ,  X, Y )  and y(t ,  X, Y ) 

u = x’ and v = y’. 

Van Dommelen (1981) was the first to use Lagrangian variables effectively to study 
non-interactive flow problems for which p(t,n) can be estimated a priori. Blythe, 
Kazakia & Varley (1972), Varley, Kazakia & Blythe (1977), and Varley & Blythe 
(1983) used (t, x, Y )  as independent variables to study several interactive flow problems 
for which the determination of p(t, x) was part of the problem. 

When the d p / d x i  are given by (2.8) with pi = pi(t), (4.1) reduces to the linear 
equation 

x” + 20Jx’ + (k + M’J)x + p = 0. 

Also, when the velocity field is of the form (2.5), the initial conditions (4.2) require 
that 

when t = 0 ,  x = X  and x ‘ = A ( Y ) X + B ( Y ) ,  (4.7) 
where 

A ( Y )  = a(0, Y )  and B ( Y )  = b(0, Y )  (4.8) 
are specified functions. The solution to (4.6) satisfying conditions (4.7) can be written 
as 

where go(t) and g l ( t )  satisfy the homogeneous form of (4.6), ( p  = 0), with 
x = so(t)X + g,(t)U + xo(t), (4.9) 

go(0) = lo, gb(0) = 0, Sl(0) = 0, S’l(0) = lo, (4.10) 

and xo(t) satisfies (4.6) with 
xo(0) = X b ( 0 )  = 0. (4.11) 

Also, 
u = A( Y ) X  + B(Y ). (4.12) 

It follows that 

where 
x = g(t, Y ) X  + h(t, Y 1, (4.13) 
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u = x’ = g’X +h’ = ax + 6: (4.15) 

where 
a = g’g-’ and b = h’ - ah. (4.16) 

The representations obtained above for a(t, Y )  and b(t, Y )  may be obtained directly 
from the inviscid forms of equations (2.10) and (2.11). These imply that a(t, Y )  and 
b( t, Y )  satisfy the Riccati-type equations 

and (4.17) 

If a and b are written in terms of g and h as in (4.16), it follows that g(t,  Y )  and 
h(t, Y )  satisfy linear equations whose solutions can be written in the form (4.14) 

Relations (4.15) and (4.16) determine u as an explicit function of ( t , x , Y ) .  Then 
y ( t ,  Y )  is determined from condition (4.3) which implies that 

a’ +(a + 252J)a + 52’J + k = 0 b’ + (a + 2QJ)b + p  = 0. 

(4.18) 

is a function only of (t, Y ) .  If y = yo(t)  is the equation of the material surface Y = 0, 
according to (4.18) 

aY 
a t .  

and v = - y = yo(t)+ J” 
0 P(t ,S)  

(4.19) 

The velocity components determined from relations (4.6)-(4.19) represent exact solu- 
tions to the Euler equations. 

5. Mainstream flows for which a = a(t). 
We consider mainstream flows for which a = a(t),  where a(t) is given by (3.1) for 

t < 0 and is determined in terms of k( t )  from the first of conditions (4.17) for t > 0. 
The second of these conditions then implies that b ( t , y )  may still be written in the 
form given by (3.6) and (3.9). / ( t )  is determined from the conditions 

/’ = /(a + 2QJ) and /(O) = 10, (5.1) 

C = B ( Y )  - bo(0) with Y = P( t ) ( y  - yo(t);  ( 5 4  

p’ = (all + az2)P with p(0) = 1. (5.3) 

(5.4) 

while 

P ( t )  satisfies the equation 

Consequently, in the mainstream 

u = a(t)x + bo(t) + [ I ( ~ ) ] - ’ ( B ( Y )  - MO))  

and 

(Y - Y o )  + Yh. 
p’ 
P 

2, = -- (5 .5 )  

The motions of the vortex lines are of some interest. When u is given by (5.4) the 
vorticity vector 
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It follows that the equation of the vortex line through the point (x, y )  = (XO, yo)  is 

x = xo + [ 2 4 t ) l - ’ J ( W ,  Y )  - b(t ,  Yo)) .  (5.7) 

5.1. Plane flows 
As a first example of a mainstream disturbance, consider the case when the reference 
axes are not rotating, when u = (u,O), and when the flow variables are independent 
of x2. Accordingly, in the mainstream, with x = XI, 

(5.8) 

(5.9) 

P = $( t )x2  + pi( t )x  + ;Qt(t)(y - 
u = 4 t ) x  + bo(t) + (W) - bo(O))/P(t), 
IJ = Y m  - 4t ) (Y  - Yo(t));  

+ Q i ( t ) b  - YO), 

and 

a(t) and bo(t) are related to k ( t )  and p l ( t )  by the equations 

a’ + a* + k = 0 and bb + abo + p1 = 0. 

In terms of P(t) ,  

and 
P O  

I = ( o  1 ) .  

(5.10) 

(5.1 1 )  

According to (5.9) and (5.10), P(t) satisfies the equation 

P” + kp  = 0 with p(0) = 1 and P’(0) = a(0). (5.12) 

Also, it follows from (2.12) and (5.8) that 

Ql( t )  = -y: and Q2(t)  = a’ - a2. (5.13) 

If 

where 
(5.14) 

- - 
x = x - xR(t) ,  jj = y - yo(t)  and v = u - yo(t), 

(5.15) 

relations (5.8) can be re-written 

(5.16) P’(t) - u = [P’(t)x + B(p(t) j j )] /P(t)  and V = -- 

The velocity field given by (5.14)-(5.16) is an exact solution of the Euler equations. 

had (Lagrangian) coordinates ( X ,  Y )  at t = 0 are given by 

P( t )  y .  

According to (5.16), in the mainstream the (X,Y) coordinates of the particle that 

X = %(t)  + P(t)X + Pl(t )B(Y)  and jj = Y /P( t ) ,  (5.17) 

where 

Also, the streamfunction 

y = [P’(t)ZY + B(Y’)dY’] /P2( t )  with Y = P(t)L. (5.19) I’ 
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As an application of the representations (5.8)-(5.19), consider the flow above the 

B(0) = 0, B(m) = U,, B’(Y) B 0, and k ( t )  2 0. (5.20) 

These conditions ensure that the pressure gradient in the mainstream is increasing with 
increasing x, which is the direction of the basic flow at t = 0, and that P’ ( t ) /P ( t )  d 0 
for some interval 0 d t < t,. It then follows from (5.8) that 

as y -+ 0, 24 P’(t ) (x  - x R ( t ) ) / P ( t ) ,  = U e ( t ,  x); (5.21) 

u, > 0 when x < x ~ ( t )  and u, < 0 when x > x R ( t ) .  Thus, according to inviscid 
theory, viewed relative to the plate the flow downstream of the cross-section x = x ~ ( t )  
contains a region of reverse flow. When k(0)  # 0, 

X R ( 0 )  = -p1(O)/k(O), (5.22) 

stationary flat plate y = 0 when 

which, according to (5.10), is the value of x where d p / d x  = 0. For small times, 

xR(t)  Iv xR(0) - ip ; (O) t /k(O) ,  (5.23) 

while at the cross-section where d p / d x  = 0 

x - X R ( 0 )  - P;(O)t/k(o). (5.24) 

The inviscid flow described by relations (5.16) is self-similar with similarity variables 

Y = P(t)y and 5 = P’(t)(x - xR(t)). (5.25) 

In terms of these variables, the equation of the instantaneous streamline through the 
point ( 5 ,  Y )  = (50, YO) is 

Also, the equation of the critical level where u = 0 is 

5 = BV) ,  

while the equation of the dividing streamline is 

(5.26) 

(5.27) 

(5.28) 

Figure 2 shows a typical streamline pattern predicted by inviscid theory when 

B( Y )  = U,erf( Y /Yo). (5.29) 

This profile is depicted by the broken curve which, according to (5.27), also represents 
the critical level. According to (5.28) the shear layer separates from the plate when 
5 = U, which, together with (5.25), implies that 

x = X R ( t )  - U,/P’(t) = xs(t). (5.30) 

With some minor modifications, the above analysis may be used to describe some 
features of the early stages of the breakup of a free shear layer due to the passage of 
a disturbance in the outer flow. Figure 3 depicts a typical streamline pattern when 

B(Y) = M(7tY,)-’/2 exp(-(Y/Yo)2). (5.31) 

The adverse pressure gradients induced by the passage of the disturbance outside the 
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I 
~ 0.5 0 1 .0 1.5 2.0 

5 
FIGURE 2. The streamline pattern in the neighbourhood of the separation point in the self-similar 
flow when B ( Y )  is given by equation (5.29). The thicker solid and broken curves represent the 
dividing streamline and the critical level. 

-2 
1 2 

5 
0 

FIGURE 3. The streamline pattern in the neighbourhood of the curve where an unsteady flow 
stagnates. B ( Y )  is given by equation (5.31). The solid and broken curves represent the dividing 
streamline and the critical level. 

shear layer cause the flow to stagnate at the broken curve. The flow divides at the 
heavy solid curve. 

5.2. Turbulent mainstream 

B ( Y )  = U, + r-lUI(1- ( ~ y / v ) - ~ ) ,  

When yo=O and 

relations (5.16) imply that 

(5 .32)  
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In (5.33), j ( t )  is determined by the time variation of d 2 p / d x 2  = k ( t )  in the mainstream 
from (5.12). For most of the problems discussed in this study the mainstream 
disturbance is specified, and b(t) is determined uniquely. If, however, a2p/dx2 
fluctuates in time about some average value, as it does if the flow in the mainstream is 
turbulent, the simple flow defined by relations (5.33) may also be used to model some 
features of that found in the outer part of a turbulent boundary layer. The dependence 
of u on x is required if the flow is to converge or diverge. At any fixed point, the 
turbulence in the mainstream may be intermittent: for times when the convergence 
or divergence is strong the first term in the expression for u dominates, and the 
vorticity is weak; when the convergence or divergence is weak, u is approximated by 
the well-established power-law profile in a turbulent flow. When r = 0, (5.33) implies 

(5.34) l.4 = [P’(t)(x - xR(t))  + UO + u1 ln(P(t)uy/v)l/P(t). 

5.3. Rankine vortex 

As a second example of a mainstream disturbance, consider the case when the 
disturbance is produced by the passage of the core of a Rankine vortex whose axis 
of rotation is parallel to the y-axis. If x = x1 + ix2 and u = u1 + iu2, for this flow 

P = k( t ) (x :  + x$)/2 + ~i ( t )x i  + ~ 2 ( t ) ~ 2  + Qdt)y2/2 + Q I ( ~ ) Y ,  

u = ( 6 ( t )  + i o ( t ) ) x  + bo(t) and v = uo(t)  - 26(t)y. 

Conditions (4.17) imply that k ( t ) , d ( t )  and o(t) are related by the condition 

(6 + iw)’ + (6 + iw)2 + k = 0, 

and that bo(t) satisfies the equation 

bo’ + (6 + ico)bo + p1 + ipz = 0. 

Ql(t) and Q2(t) can be expressed in terms of uo( t )  and 6 ( t )  as 

Q1 = -(vh - 26110) and Q2 = -(26’ - 4a2). 

Relation (5.37) implies that we can write 

(6 + io) = 4’/4 where 4” + kq5 = 0 with $(O) = 1. 

Also, according to (5.38) and (5.40), 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

Conditions (5.40), together with the fact that k is real, imply that if the variation in 
strength of the vortex core, o(t), is specified 

#4t) = [P( t ) ] ” *  exp(i@(t)) where P ( t )  = o(O)/w(t)  and @(t)  = 

k ( t )  can be expressed in terms of o(t) by using the first of conditions (5.43) and the 
fact, which follows from (5.37), that 

k ( t )  = 0 2 ( t )  - h2( t )  - s’(t). (5.44) 
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If the reference axes are rotating about the y-axis with an angular velocity a(t) 
relative to an inertial frame, o should be replaced by o + D and k in (5.37) should 
be replaced by k + Q 2 .  

The trajectory of the axis, or centre, of rotation is given by 

x = -bo/(6 + ico) = c(t) .  (5.45) 

If the flow is referred to a polar coordinate system based on this axis, 

u, = 6( t ) r  and ug = w(t)r. (5.46) 

The equation of the instantaneous streamline through the point (xo, yo) can be written 
in the form 

Yo - Ys x - c  

- xo - c = (d'. 
where 

y ,  = v0/26 and IC = (6 + iw)/26. 
If the swirling flow in the mainstream is also sheared in the y-direction 

(5.47) 

(5.48) 

where 
Y = w(O)y/w(t) and B ( Y )  = B l ( Y )  + iB2(Y). (5.50) 

4(t) and 6 ( t )  are determined from w( t )  by (5.42) and (5.43), c( t )  is given by (5.45), and 
v is given by (5.36). When c = y ,  = 0, the equations of the instantaneous streamline 
and vortex line through the point (XO, yo)  are 

x = xo(yo/y)" - (264)-'Y-" B(S)S"-'dS, where YO = w(O)yo/w(t), (5.51) L 
and 

The equation for the particle trajectories is 

x = xo + (ii)(woo) P ' /~[B(Y) - B(Y~)]~- '@. (5.52) 

x = (wow)-'/2[ooXe1@ + B ( Y )  sin(@)], (ao = o(0)) .  (5 .53)  

Figure 4 shows how the streamsurfaces change with increasing co/coo. These figures 
correspond to 6 = constant, so that, according to (5.42) and (5.43), 

o = COO exp(-26t), @ = (00 - co)/26, and 4 = (coo/o)1'2e(@). (5.54) 

Also, B ( Y )  is given by (5.29); o/oo = 1 for figure 4(a), and o/wo = 2 for figure 
figure 4(b). 

6. Free shear layers 
The mainstream flows described in $ 5  were assumed to be governed by the Euler 

equations. However, when a = a(t)  the corresponding solutions to the Navier-Stokes 
equations can easily be found. The viscous term in (2.10) is zero, while equation (2.11) 
implies that b(t, Y )  satisfies the equation 
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FIGURE 4. A streamsurface in a sheared flow that is disturbed by the passage of the core of a 
Rankine vortex: (a) o/oo = 1; (b)  w/wo = 2. 

In terms of the time measure 

= 1' p2(t')dt', 

the solution to (6.1) can be written 

b = bo(t) + [/(t)]-'C(t, Y ) ,  

where C(z, Y )  satisfies the linear diffusion equation (3.7). The representation (6.3) is 
of the same form as that given by (3.6). 

To summarize: when a = a(t)  satisfies the first of (4.17) for some symmetric matrix 
k( t ) ,  the velocity fields are of the form 

(Y - Yo) + Y& (6.4) 
P' and u = -- 
P 

u = a(t )x + bo(t) + [/(t)]-'C(z, Y )  

bo(t) is given by (3.9), / ( t )  is determined from (5.1), and Y is given by (5.2) with 
P ( t )  determined from (5.3). Cl(t, t )  and Cz(z, Y ) ,  the components of C(z, Y ) ,  are any 
functions that satisfy the linear constant-coeficient diffusion equation. Parallel shear 
flows that satisfy the additional conditions (3.1) are special cases of those described 
by relations (6.4). For these flows P( t )  = 1, z = t and Y = y.  

One possible representation for C(z, Y ) is 

- vx2z) - vx2z)dK , 

(6.5) 
1 

where the summation is over a discrete range of the complex parameter ti, and 
the integration is over some continuous range of variation of ti. The fact that the 
Navier-Stokes equations have exact solutions for which the velocity components can 
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be written in the form (6.4) with C(z, Y )  given by (6.5) was known by Kelvin (1887) 
(see Craik & Criminale 1986.) When the flow domain is the region where Y > 0, for 
z > 0 a more useful representation for C(z, Y )  is 

C(z, Y )  = Lm[G(z, Y - Y’) - G(z, Y + Y’)]C(O, Y’)dY‘ 

+ Gl(7 - 8, Y)C(z’,O)dz’, (6.6) L7 
where 

ag 
a Y  

G(z, Y )  = (47~vz)-’/~ exp[-Y2/(4vz)] and Gl(z, Y )  = -2v-. (6.7) 

In (6.6), 

C(0, Y )  = b(O, Y )  - b0(0) and C(z, 0) = J( t ) (b( t ,  Y O )  - bo(t)), (6.8) 

where z ( t )  is given by (6.2). If the flow domain is the infinite region where -co < 
Y <a, for z > O  

c(z,  Y )  = [I G(z, Y - Y’)C(O, Y’)dY’. 

In the inviscid limit, the first integral in (6.6) and the integral in (6.9) -+ C(0, Y )  and, 
for all Y > 0, the second integral in (6.6)+ 0. 

This study describes some features of the interaction of a localized shear layer with 
a disturbance in the mainstream. When this layer is adjacent to a plane rigid surface, 
Y = 0, at which no-slip conditions must be applied, we must take a = a ( t , y )  in (2.5). 
Velocity fields of the form (6.4) cannot satisfy such boundary conditions. They may 
be used to describe the interaction only for times when the presence of boundaries 
has no appreciable effect on the flow: thereafter a = a ( t , y ) .  For such early times 
the shear layer may be regarded as a free shear layer in which a = a ( t )  and the 
contribution of the second integral in (6.6) is negligible compared with that of the 
first: the flow is determined by the shear profile at t = 0 and by the disturbance in 
the mainstream. Accordingly, either C(z, Y )  is given by (6.9) or 

c(7, y )  = Lm[G(z, Y - Y’) - G(z, Y + Y’)]C(O, Y’)dY’. (6.10) 

When the flow prior to t = 0 is one of the four parallel flows discussed in $3 ,  
the appropriate integral (6.9) or (6.10) can be evaluated explicitly: C(z, Y )  in (6.4) is 
obtained by simply replacing ( t ,  y )  by (7, Y )  in the expression that is used for C ( t ,  y )  
in the parallel flow. For example, when the parallel flow is a plane flow in which 
u = (u,O), where u = C ( t , y )  is given by (3.25), and if the mainstream disturbance is 
also two-dimensional, for t > 0 

1 u = f i - ’ ( f i ’ (x  - xR) + Uoerf(qo/JZ) + r-l U I  [erf(q/fi) - (1 + z / ~ ) - ~ / ~ ~ ( q , r ) ] )  
and 

where q = fiy/(2v( T + z))’I2 and qo = Py/(2v(T0 + z))’l2; 
u = - (P ’ /P)Y,  

(6.11) 
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p( t )  and xR(t) are given by (5.12) and (5.15) while ~ ( t )  is given by (6.2). The velocity 
field given by (6.11) is an exact solution to the Navier-Stokes equations. 

Alternatively, if the velocity field in the parallel flow is given by 

u = u1 + iu2 = Cl( t , y )  + iC2(t,y) = C(t ,y ) ,  (6.12) 

and if the mainstream disturbance is that produced by the passage of the core of a 
Rankine vortex, the representations (6.4) imply that 

where @(t) ,6( t ) ,  and c( t )  are determined in terms of o(t) by (5.42)-(5.45), Y is given 
by (5.50), and 

(6.14) 

u is given by (5.36). When c = yS  = 0, the equations of the instantaneous streamline 
and vortex line through the point (XO, yo) are 

x = XO(YO/Y)" - (264)-'Y-" l: C(Z, Ps)s"-'ds (6.15) 

and 

x = xo + ii[o(0)o(t)]-'/2 exp[--i@(t)] [ ~ ( z ( t ) ,  Y )  - c(z(~), YO)] ; (6.16) 

p, Y and YO are given by (5.42), (5.50) and (5.51). The trajectory of the particle that 
had coordinates ( X ,  Y )  at t = 0 is determined from the relations 

x = $(t)[X + l [ @ ( t ' ) ] - 2 C ( ~ ( t ' ) ,  Y)dt'], y = o ( t ) Y  / o ( O ) .  (6.17) 

When 6 = constant, 

z = ((oo/o)~ - 1)/46. (6.18) 

7. Singularities 
The streamline pattern shown in figure 2 occurs while the thickness of the shear 

layer is growing at a rate that is independent of x. According to inviscid theory, if 
k ( t )  = d2p/dx2 is such that P(t ) ,  the solution to equation (5.12), has a zero when 
t = t ,  then as t -+ t ,  the thickness of the layer grows without bound while at any 
fixedJinite y 

u --+ y / ( t c  - t )  (7.1) 

Thus, the velocity components become unbounded at t = t,. For example, when k = 
constant = a2,P = cos(at) and t, = n / 2 ~ .  

Viscosity alone cannot always prevent the flow from developing singularities. For 

and u + B'(0)y - ( x  - xR(tc))/(tc - t).  
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/?=0.25 
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FIGURE 5. Changes in typical shear profiles as p varies in time. 
U/U 

example, the corresponding solution to the Navier-Stokes equations is 

v = -P’(t)y/P(t) and t.4 = (C(z, Y )  - P ’ M x  - XR(t)))/P(t), ( 7 4  

where C(z, Y )  is given by (6.9). This solution also develops singularities if P(tc) = 0. 
In fact, as t -+ t ,  relations (7.1) continue to hold with the constant B’(0) replaced by 
the constant 

co 

( n ~ z ~ ) - ’ / ~  1 B’( Y )  exp(-Y 2/4vz,)dY, where z, = 1 [P(t)]*dt. (7.3) 

The fact is, it is not viscosity alone that prevents the formation of singularities, but 
viscosity together with correctly specified boundary, or auxiliary, conditions. Both the 
inviscid and viscous solutions develop singularities if k ( t )  is such that P(t) has a zero. 
In, practice, P ( t )  is determined by the global flow, not just by local conditions near 
the plane x = 0. When a correct description of the interaction between the flow 
in the shear layer and the outer mainstream can be found, the outer flow always 
adjusts so that P ( t )  has no zeros. Then, neither the viscous solution nor the inviscid 
solution develop singularities. Of course, the Euler equations governing unsteady 
plane flows have many solutions that develop singularities in a finite time. Those that 
describe irrotational flows, or flows with constant vorticity, are also exact solutions 
of the Navier-Stokes equations: it is not viscosity but boundary, or other auxiliary, 
conditions that prevent such flows from occurring. Figure 5 depicts the changes in 
two typical shear profiles at the cross-sections x = xR(t) when /? varies in time. As 
P decreases, the thickness of the layer and the magnitude of u at any particle grow 
like P-’.  For the example represented by the broken curves, u is given by (7.2) with 
C(z, Y )  given by (3.11); for the other example u is given by (6.11). 

10 FLM 274 
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8. Axis of rotation varying in time 
So far the direction in which the flow variables are changing rapidly with distance 

has been fixed relative to an inertial frame. In this section we state the modifications 
that should be made to the analysis when this direction rotates. The representations 
are then used to describe flows in the vicinity of a pitching channel. 

The reference axes, which rotate with a time-varying angular velocity 

W t )  = (Ql(t), Qdt), Q ( t ) )  (8.1) 

relative to an inertial frame, are chosen so that the x3-axis again coincides with the 
direction in which the flow variables are changing rapidly with distance y.  Then, the 
Navier-Stokes equations (2.1) still have exact solutions of the form given by (2.5) and 
(2.6); a( t ,y)  and v( t ,y )  still satisfy (2.10), but (2.11) for the bi( t ,y)  must be replaced 
by the equations 

The pi( t ,y)  are determined from the conditions 

and po(t, y )  from the condition 

8.1. Flow referred to fixed axes 
If X denote the Cartesian coordinates of a point referred to axes whose origin coincides 
with that of the rotating axes but which are not rotating relative to inertial axes, we 
can write 

x =r ( t ) X  where x3 = y.  (8.5) 

(8.6) 

0 3  = Q ( t )  and 8’(t) = (Qi ( t )Qi ( t ) ) ’ /2 .  (8.7) 

The elements of the rotation matrix r can be written 

rij = cos 86, + ( 1  - cos O)Q~Q,/(Q’)~ + (Eijkok/er) sin 8, 

where 

The fluid velocity relative to the non-rotating axes, E ,  can be written in terms of the 
velocity, u, relative to the rotating axes, as 

(8.8) u = rTu + 42 x Z 

y = n ( t )  K, where ni(t)  = r3i(t), i = 1,2,3, (8.9) 

- where 2.43 = v. 

In terms of the similarity variable 

a = (a(t, y )  - 2n(t)n‘(t))X + S( t ,  y ) .  
The pressure jj is determined from the relation 

(8.10) 

PIP + f ( t )  X = (k( t )  + 4n’(t)n’(t))=/2 + P ( t ,  y )  X + Q(t ,y ) ;  (8.11) 
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f ( t )  is the acceleration of the reference axes relative to an inertial frame and n ( t )  is a 
unit vector. The 3( t ,  y )  and v( t ,  y )  satisfy the equations 

av 

aY 
- + tr(3) = 0 

and 
a 3  aii a23  
- + + - + + a  + k ( t ) = v  -. 
at ay aY 

In addition, 

k( t )  satisfies the constraints 

- an = na= n‘; 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

Once v ( t , y )  and the 3 ( t , y )  have been determined from the above equations and the 

-T 
k = k  and kn+n” = O .  

Equations (8.12)-( 8.15) are compatible. 

associated auxiliary conditions, b(t, y )  is determined from the equation 

where 

ab  a b  a2b 
at a y  aY2’  
- + U -  + iib + R7i + P = v - 

a2v av av 

a y 2  a y  at  
R = v - - v - -  - 

(8.16) 

(8.17) 

and 

- = 2(n” +an’) with n . P = 0. (8.18) 
ap 

8Y 
Also, Q(t,  y )  is determined from the condition that 

(8.19) 

8.2. Generalized Kelvin flows 
In the special case when 3 = 3 ( t ) ,  

v = vo(t) + v l ( t ) y ,  where v1 = -tr(a), R = -(oh + q v o )  - (0; + v:)y, 
and P = 2(n” + aTn’)y + Po(t) with n . Po = 0. 

(8.20) 
Also, 

61 and bo satisfy the equations 

- 

b = vn - 2yn’ + &(t )  + b l ( t ) y  + [/(t)]-’C(z,  Y )  (8.21) 
- 

(8.22) 
--I 

6 ,  + vlbl + iib1 = 2(ii - i iT)nf with n.bl = 0, 

and 
- 

(8.23) 
-1 

6, + iibo + Po + vobl = 0 with n.60 = 0. 

The 3 x 3 matrix I ( t )  satisfies the (compatible) equations 

I” + lk = 0, l’n = In‘ and NI= n, (8.24) 

10-2 



288 

where N is a constant vector. In terms of I, 
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- 
a = /rli. 

Also, z(t) is given by (6.2), and Y = P(t)(y - yo(t)) where 

P(t) = exp (- Lul(t’)dt’) 

(8.25) 

(8.26) 

Each of the three components of C(z, Y )  satisfies the diffusion equation together with 
the (compatible) constraint 

N . C = O .  (8.27) 

9. Flows in a pitching channel 
The representations obtained in 9 8 may be used to describe two-dimensional 

Couette flows that occur in a channel that pitches about an inertial axis normal to 
the plane of flow. The X3-axis is taken as the axis of rotation. The boundaries of 
the channel are parallel to the line (y = 0) whose equation is X2 = tan(8)Xl ; 8( t )  is 
arbitrary. Then, 

n = (- sin 8, cos 8,0), n’ = -y(cos 8, sin 8,O) = - y t ,  where y = Q’, (9.1) 

(9.2) 
- 

while 

The equations of the channel walls are given by (9.2) with y = yo and y = yl. 

x1 =xcosO-ysine and X2 =xsinO+ycosQ.  

When U3 = 0, conditions (9.1), together with the restictions (8.14), imply that 

- 
a = nnf + n‘n + n‘n’/y2. 

According to (8.12)-(8.15) and (9.1), u( t ,  y) and a(t,y) satisfy the equations 

k(t) is arbitrary. Also, equations (8.16)-(8.19) imply that 
- 

b = ~n + bt, 

where b(t, y) satisfies the equation 

db a2b 
- + ~ b + P o - 2 7 ’ ~  = v - ;  
dt dY2 

Po(t)  is arbitrary. According to (8.10), (9.1) and (9.5), 

- 
u = [u(t,y) + yx]n + [a(t, y)x + b(t, y)  - yylt, where x = t . x and y = n . x. (9.7) 

Also, the pressure p is determined from the relation 

p / p  + f . x = k x 2 / 2  + y2(x2 + y2)/2 - Y’XY + (2yu + PO)X + Q(t, y), (9.8) 
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where 

(9.9) 

When y = 0 and b = 0, equations (9.1)-(9.9) describe the Blasius-Hiemenz (1908, 
1911) flow at a forward stagnation point. 

For the flow in a pitching channel a = 0, v = 0 and b(t,y) satisfies the equation 

ab d2b 
- + Po(t) - 2y’(t)y = v 2. 
a t  a Y  

(9.10) 

The no-slip condition at the channel boundaries requires that 

b(t, YO) = b(t, Y I )  = 0. (9.1 1) 

We suppose that PO rconstant. Also, prior to t = 0 the flow in the non-pitching 
channel is a steady Couette flow with 

b = -(P0/2v)(y - YO)(Yl - Y). (9.12) 

For t > 0 we write 

b = -(P 0/2V)(Y - YOKYl - Y) + 2Y(t)Y + C(t,Y)9 (9.13) 

where c( t, y) satisfies the diffusion equation 

with 
(9.14) 

C(0,y) = O  for yo < y < y1, and c(t,y) = -2y(t)y at y = y o  and y = y l .  
(9.15) 

If t is measured in units of (yl - y0)’/v, the solution to (9.14) satisfying conditions 
(9.15) can be written as 

rt 

c(t,y) = -2 [yok(t - t ’ ,~[ )  + ylk(t - t’,~)]y(t’)dt’, J, (9.16) 

where 
and (9.17) 

k(t, z), whose Laplace transform with respect to t is sinh(zsf )/ sinh(sf ), can be repre- 
sented by the series 

k(t,z) = (4nt3)-1/2 c( 1-z+2n) exp(-( 1-~+2n)~/4t)-(l+z+2n) exp(-(l+~+2n)~/4t). 

(9.18) 
When y changes discontinuously at t = 0 and thereafter remains constant, the 

(9.19) 

z1 = (Y1 - Y ) / ( Y l  - Yo) z = (Y - YO)/(Yl  - Yo). 

co 

n=O 

representation for b is best rewritten as 

b = -(Po/~v)(Y - yo)(yl- Y)  + 2y(t)(yoZo(t,z) + (yi - YO)ZI(~ ,  z)), 

where 00 
- 
bo(t, z) = 4n-’ c ( 2 n  - l)-’ exp(-(2n - 1)2n2t)) sin((2n - 1)nz) (9.20) 

n = l  

n= 1 
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t=O+ , 
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FIGURE 6. The profiles of 6" and bl at various values o f t  

Figure - -  6 depicts the profiles of b , ( t , z )  and & ( t , z )  with increasing t. As t -+ 
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